Ion binding and selectivity of the rotor ring of the Na+-transporting V-ATPase.

نویسندگان

  • Takeshi Murata
  • Ichiro Yamato
  • Yoshimi Kakinuma
  • Mikako Shirouzu
  • John E Walker
  • Shigeyuki Yokoyama
  • So Iwata
چکیده

The vacuole-type ATPases (V-ATPases) are proton pumps in various intracellular compartments of eukaryotic cells. Prokaryotic V-ATPase of Enterococcus hirae, closely related to the eukaryotic enzymes, provides a unique opportunity to study ion translocation by V-ATPases because it transports Na(+) ions, which are easier to detect by x-ray crystallography and radioisotope experiments. The purified rotor ring (K-ring) of the E. hirae V-ATPase binds one Na(+) ion per K-monomer with high affinity, which is competitively inhibited by Li(+) or H(+), suggesting that the K-ring can also bind these ions. This finding is also supported by the K-ring structure at 2.8 A in the presence of Li(+). Association and dissociation rates of the Na(+) to and from the purified K-ring were extremely slow compared with the Na(+) translocation rate estimated from the enzymatic activity, strongly suggesting that interaction with the stator subunit (I-subunit) is essential for Na(+) binding to /release from the K-ring.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of the rotor ring modified with N,N'-dicyclohexylcarbodiimide of the Na+-transporting vacuolar ATPase.

The prokaryotic V-ATPase of Enterococcus hirae, closely related to the eukaryotic enzymes, provides a unique opportunity to study the ion-translocation mechanism because it transports Na(+), which can be detected by radioisotope (22Na(+)) experiments and X-ray crystallography. In this study, we demonstrated that the binding affinity of the rotor ring (K ring) for 22Na(+) decreased approximately...

متن کامل

High-Resolution Structure and Mechanism of an F/V-Hybrid Rotor Ring in a Na+-coupled ATP Synthase

All rotary ATPases catalyse the interconversion of ATP and ADP-Pi through a mechanism that is coupled to the transmembrane flow of H(+) or Na(+). Physiologically, however, F/A-type enzymes specialize in ATP synthesis driven by downhill ion diffusion, while eukaryotic V-type ATPases function as ion pumps. To begin to rationalize the molecular basis for this functional differentiation, we solved ...

متن کامل

Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae.

The membrane rotor ring from the vacuolar-type (V-type) sodium ion-pumping adenosine triphosphatase (Na+-ATPase) from Enterococcus hirae consists of 10 NtpK subunits, which are homologs of the 16-kilodalton and 8-kilodalton proteolipids found in other V-ATPases and in F1Fo- or F-ATPases, respectively. Each NtpK subunit has four transmembrane alpha helices, with a sodium ion bound between helice...

متن کامل

Structure of the rotor ring of F-Type Na+-ATPase from Ilyobacter tartaricus.

In the crystal structure of the membrane-embedded rotor ring of the sodium ion-translocating adenosine 5'-triphosphate (ATP) synthase of Ilyobacter tartaricus at 2.4 angstrom resolution, 11 c subunits are assembled into an hourglass-shaped cylinder with 11-fold symmetry. Sodium ions are bound in a locked conformation close to the outer surface of the cylinder near the middle of the membrane. Th...

متن کامل

On the principle of ion selectivity in Na+/H+-coupled membrane proteins: experimental and theoretical studies of an ATP synthase rotor.

Numerous membrane transporters and enzymes couple their mechanisms to the permeation of Na(+) or H(+), thereby harnessing the energy stored in the form of transmembrane electrochemical potential gradients to sustain their activities. The molecular and environmental factors that control and modulate the ion specificity of most of these systems are, however, poorly understood. Here, we use isothe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 25  شماره 

صفحات  -

تاریخ انتشار 2008